Coat Colour (Red/Black)

Coat colour in cattle is primarily determined by the Extension locus (E) on the MC1R gene, which controls whether an animal produces black pigment (eumelanin) or red pigment (phaeomelanin).

How does it work?

There are three alleles (forms) of this gene:

- Dominant black (ED) this allele is dominant over both the other alleles so animals will have black coats if they have one ED copy.
- Recessive red (e) all homozygous recessive animals will have red coats.
- Wild type (E+) is neutral causing variable coat colours ranging from fawn/yellow to dark brown/black in homozygous animals. This is further influenced when other modifying genes are present see note.

Breeds that that commonly carry a wildtype (E⁺) allele are: Limousin, Simmental, Jersey, Shorthorn, Red Devon, South Devon, and Highland.

How to interpret the results:

Genotype result	Interpretation	Coat colour	
ED/ED	Homozygous dominant black	Black	
ED/e	Dominant black/recessive red	Black (red carrier)	
ED/E+	Dominant black/wildtype	Black (wildtype carrier)	
E+/e	Wildtype/recessive red	Red (wildtype carrier)	
E+/ E+	Homozygous wildtype	Varied*	
e/e	Homozygous recessive red	Red	

^{*} Depends upon modifier genes.

Mating outcomes (statistically):

	ED	ED	$E^{D}E^{D} \times E^{D}E^{D}$		ED	E ⁺	EDED x EDE+
\mathbf{E}^{D}	BLACK	BLACK	100% progeny will be	ED	BLACK	BLACK	100% progeny will be
\mathbf{E}_{D}	BLACK	BLACK	Black	ED	BLACK	BLACK	black
	ED	е	$E^{D}e \times E^{D}e$		ED	E ⁺	$E^{D}e \times E^{D}E^{+}$
\mathbf{E}^{D}	BLACK	BLACK	75% progeny will be	E^D	BLACK	BLACK	75% progeny will be
е	BLACK	RED	Black, 25% will be Red.	е	BLACK	RED	Black, 25% will be Red.
		ı			ı	ı	
	E ⁺	е	E ^D e x E⁺e		E ⁺	е	E⁺e x E⁺e
ED	BLACK	BLACK	50% progeny will be	E ⁺	VARIED	RED	75% progeny will be RED,
е	RED	RED	Black, 50% will be Red	е	RED	RED	upon other factors.
	BLACK	BLACK	50% progeny will be		VARIED	RED	75% progeny will be I 25% will vary depend